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NONLINEAR FILTERING 

R. S. Bucy 

Departments of Atrosptct Engineering and Mathematics 
University of Southern California 

Los Angeles, Calif.   90007 

D D c \ 
AW 18 !975 ill 

Abstract 

The purpose of this paper is to review recent 
progress in the actual construction of optimal non- 
linear filters. Specifically, «e will consider the 
construction of numerical algorithms, which accept as 
inputs noisy observations of a nonlinear function of 
signal process and produce as outputs estimates of the 
signal process. These algorithms, because of the 
structure of the nonlinear filtering problem, can be 
thought of conditional probability function generators. 
A historical review of the theory and applications of 
nonlinear filtering will be given, which will attempt 
to catalog the seminal ideas in the field as well as 
some unsolved problem which are obstructing progress. 

1, Introduction 

History of the Theoretical Resolution 

The theory of nonlinear filtering was initiated by 
Stratonovich in (1] in 1960. He assumed that the 
signal x(s,w) was a Markov diffusion process taking 
values In A*, and further that observations were avaiV 
able of the form 

i{t,w) h(s,x(s)) ds ♦ v(t.w) (1.0) 

valued where v(t,w) is a Brownian motion process ** 
with infinitesimal covariance Hit)    and h is 
reasurable function from (to, ») » A*1 to As. The 
problem consisted of finding the conditional distribu- 
tion of x(t) given 2(s,w) for t« <. > < t,  as If 
one is interested in estimating x(t; "on the basis of 
knowledge of the observation sample function z(',w), 
this conditional distribution contains all the infor- 
mation relevant to the estimation process. Let us 
assuinfe that x(t) possesses a transition density 

p(t.x,y) (i.e., P{x(t) t A|x(o) • t) 

p(t,i,y) dy ) 
■/. 

and further the following Lindeberg conditions hold 

(1.1) 
E(x(t*h) - x(t))|x(t) «y) ■ f(y)h ♦ o(h) 

E( (x(t*h) - x(t))(x(t+h) - x(t)),|x(t) • y) 

• o(y) Qo'fy) h*o(h) 

Under these conditions and smoothness Kolmogorov in [2] 
demonstrated that 

|f   •   Ap (1.2) 

where   A " ^' |r * * trace   oQ the 

so-called backward equation.    The equation defines the 
evolution of the expectation of functions, the condi- 
tional density is a'solutlon of (1.1) with initial 
value   p(o,x,y) •   «(x-y), or in other words p(t,x,y) 
Is the Green's function of (1.1).    If on the other hand 
the initial value is     k(y), the solution is 

x) .   A dual equation was also derived E k(x(t))|x(o) 
as 

Ü-   •   *» (1.3) 

where   A   is the formal adjoint of   A   and the general 
solution of it is 

>(t,x) « /p(ttt.x)b(z)dl 

or probabilistically    >{t,x)    is the density of   x(t) 
when   x(o)   has density  u .    Notice that   p(.,.,y) 
satisfies (1.1)   while   p(.,x,.)    satisfies (1.2). 
Suppose   k{x,t,z.)    is the conditional density of x(t) 
given   ^{s.w)     t0 < s ^ t , then Stratonovich showed, 
using Bayes rule and truncating a Taylor series, the 
equivalent of 

dk • A kdt + (h-ht)^"1 d I k (1.4) 
where (1.3) is a random differential equation of Ito 
type, see (3). The initial condition of IK4) is the 
density M. of x(o), and (i. =/h(t.y) k(t,y) dy with 
dl • dz - h dt. In (6|, Ito showed that if (1.1) holds, 
f and o are Lipshitz and then x(t) itself is the 
solution of the Ito equation 

dx '  f(x)dt > ff(x)de (1.5) 
where B is a Brownian vector process independent of 
x(o)    with infinitesimal spectral matrix    Q. 

flow (1.4) is locally a description of the nonlinear 
filtering problem, and since in Quantum Mechawf^s the 
local descrirtion, the Schroedinger equation,has a 
global analog the famous Feynman path Integral, see(38] 
and (39), one might ask, does the nonlinear filtering 
problem possess a global description?    In fact, this is 
the case, although it was not until  1965 in (71 that 
this global description. The Representation Theorem, 
was proposed.   Assuming regularity conditions, see [8] 
through (14), for the details'" 

k(t,x) sÜlxIU 
£'• e«* 

*J V(*) (1.6) 

where E • means average with the observation path 
fixed and  t t        2 

Ht °fx   h(s.xs)RJ    to -\ ft lih(s,xs)  || .! ds 
"s 

(1.7) 
It is interesting to note that the conditions for the 

System 
'This research was supported In part by the United States Air Force, Office of Scientific Research, Air Force 
ems Command, under    AFDSR Grant 71-2144. 

The order within the trace is inportant here. 
actually. In (1J another form of (1.3) is given which requires to be valid in interpretation in terms of a 

■w Integral detailed in (4).   Kushner In (51 was the first to derive (1.3) in the Ito form.    See also (33). 
Mortensen In (9) first recognized that the representation theorem was In fact derivable from the chain rule 

Itar Radon-Nikodym derivatives in function space; the most elegant proof so far is given in (12), where a Hubert 
s^ce setting reduces the nonlinear problen to a linear one, where the result is easy. 

Apprjred for pvblle TSIMA«; 
dlarrlbutioa itllsillH. ' 



validtty of (1.6) are condlttOfts on the signal process 
and th~ se~sor or conditions, not a priori ~nvertftable 
conc itions on k such as ; k be twic~ continuously 
differentiJble which Is n~cessary for (1.4) to be 
Vt 1 i d. 

A largely heuristic approach to nonlinear 
fi l tcring t heory, the so-called Innovations approach, 
discovered by Frost in (15) and popularized by Kallath 
and Frost In a nu~er o! papers· (see (16) for refer
ences),hinges on transfo~tng the observations to pro
duce a new o~servation process that i s white and 
consists of "new information" at each instant, 
genera i izing ideas of Ko.lmorogorov In ( 17). While 
t~ es e i deas arP. clearly u~eful, a number of resultss 
cl a i ~~d have yet to be proven. 

It seems convenient to consijer here the discrete 
sequential version of the representation theorem as 
for nu~~tc~l purposes it seems the ~os t useful--see 
[17) for an early occurrence of this result . Suppose 
both z(t,w) and x(t,w) are sampled with sampling 
interval A and denote 

xn • x(n A + t 0 ,w) 

zn • z(n t. + t
0

,w) -z((n-1) A + t
0

,w) 

f~rther, suppose that the conditional density of 
Xn•l = y g1ven xn = x i• Sn(y,x) dnd the ~ondl
tlonal density of Zn given xn = x is Dn(x,zn) 
then 

(, 

= f.~, Sn(y,x) Fn(x) dx ( 1.8) 

(1. 9) 

w!,'! re P n { F 11 ! c1re respectively the condit iona 1 
dens ities of xn given Zn-1 .•.. ZJ, fzn, Zn-1 ·· . ZJ}, 
and Yn is the appropriate normalizing term. :1ote 
that (1.8) represents ~odel following while (1.9) re
pres~nts the influence of the new piece of data, the 
a na lo~ of the contributing factors of estimate 
dyn~mics in the linear case. 

2. Problems Arising in llurnerical Pe.- lization 

let us note that in continuous time both the local 
and ql oba 1 dynamics of the condition a 1 density (1.4) 
Jr.d (1.5) invohe a non-point:•.,ise limiting process, 
~ p~cifically a li~it in the mean because of the 
~~ finition of the stochastic integral - -see [6J. In 
vi ew o"f this finding, the value of k(t,x,z.) when a 
s ampl~ path z(·,w) is given by direct difference 
approximation of (1.4) or replacin~ x( t,w) in (1.6) 
by ran~~ process which has at most finite number of 
values for e~ch w can lead to divergent approxima
tions ne~ative values for the approximations to the 
density k(t,x) in the case of (1.4) and in general 
disasterous numerical behavior. 

It i s also a probl~, ill~strative of our last 
remarks, to produce numerically the continuous ti~ 
~hite noise processes sample functions, in fact, it 
Wd S shown by Wong and Zakai in [18) tha~ the solution 
of t he scalar stochastic differential equation 

dx = f(x) dt + o(x) d6 
is In general different from the limit of 

~ = f(xn) + o(xn> wn ( 2. 1) 

where Wn Is the derivative of an absolute~y 

continuous function and such that 

s (t,w)- 3( t ,w) & lim1twn(s) ds 
l 

in fact, x• = lim Xn satisfies 

dx• = f(~·)dt ~ d~ . (x.)dt + ~(x•)ds (2.2) 
dx 

On the other hand, nu~erous procedures for computer 
realization of approxi~ate white noise secuences extst, 
although rrost of t hem are fairly poor approximations, 
especially the canned subroutines available for the 
IBM and CDC nachines, and most of the others pass 
statistical tests w~lch ~epend fundamentally on their 
assumed ergodicity. In [19), Senne deYelops a 7 generator which is not only machine-independent bu~ 
further passes the Kolmogorov-Smironov test for 
distributi onal fit . For all ~enerators judicious 
choice of the seed is important . 

It appears then that it is preferable to sample 
both the signal, x(t,w) and z(t,w) at a rate ~.!St!·r 
enough not to l ose infonnation relathe to the 
continuous problem--see [20) and (21) for an analysts 
which determines the sampling rate for the phase 
demodulation problem-- and to •Jse (1.8) and (1.9) to 
realize the nonlinear f i lter. 

Ano ther nu~~rical problem is that in order to 
evalu,.te filter p!'!rforr.a:•ce, l!onte Carlo runs must be 
performed . lh is rt1uire~ent taxes the ability of 
modern third generation digital computers for probi~s 
with low s t ate di mensions signal processes. Further, 
the numbe r of l~onte Carlo repetitions rnust be large 
enough to provi de small enough confidence bands on the 
error perfo~ance so that the optimal filter per- 6 
formdncc c~n be meaningfully compared with sub-optimal 
filters - -<.ee ( 22). llooefully, more research on 
a priori bcun1s will el imi nate t he need for costly 
11onte Carlo sir."u lations. Pror:1ising research in this 
~irecti on i~ reported in [23). 

Fin~lly, I think it is aopropriate at th .s point 
to ind ic1te .<hy 1 t is hpc rtant to undertal<!'! numerical 
rea li za ti on ~tudies . rri~a rily these s tudies are 
important in order to concl usive ly demcnstrate the 
degree of su;;er ior error oerformance whi ch can be 
achieved us i~~ the optimal nonlinear filter . A sub
sidiary benef it is t hat insi gh t is ga ined on the 
behavior of nonlinear fil te rs. Because of a paucity 
of examples hhere closed form solutions exist--see(24) 
for a nurnber of such examples--there are few opportu
nities to check conjectures as well as to gain insight 
into what properties mi ght be generally true. ~ithoct 
examples, the f iel d of nonlinear filtering could 
easily devel op in to a stale effete area which dies by 
feeding on its~lf and is overburdened by work which is 
neither good ma thematics nor useful engineering. 

3. Conditi onal Density Representation 

It is clear that for di gi tal computer iteration 
of (1 .8) and (1.9) a r.~p T from a subset l of 
[o,l) X to a f :nite di~nsiunal vector space K must 
be given--here x is a subset of Rd. If x is 
compact, the Map can be fixed, while if x is not 
compact, the ~ap ~ust change with time. Some examples 
will clarify the ~eneral idea. 
Example 1 ( :.ee [2 51 ) 

l = C0 (-- .~ l d 

5Spacifically the proof of the innovations theorem in [15) is wrong. 
6A11 vari ab le; can take vector values and the Integral may be multi-di~nsional. 
7or. Senne informs ~~ that the gen~rator has been realized on an H.P.6S progra~able hand-calcu~ator. so that 

ba>e 2 assu~ptions in (19] are unnecessary. . 
-:~otice th~t generally error performance of sub-optimal fllters r.ust b~ evaluated by ~~onte Carlo ll'ethod>. 

Further, t h!'! statistical design of the Monte Carlo trtals mustallow for the nonergodic nature of the error. 
2 
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Is the averagt of    Pn   over « bill-centered it   x. 

where    M    Is an Integer and   un|n.?    a'1()   ""„u.^ 

^In-?'    ^ "nK ••••Vl) 

and the "  superscript denotes averaging with respect 
to     a 2HO . . . n-1 

Tn., (T,,., Pn.,)(«) ■   I     V^.^1)  »(«-«j    )• 

T    ,    denote a choice   of pre-image of «n element in 

thfl range of    T    ,. 

l*»mp\<! 2     d ■ 2    (see |29)  ) 

Example 6     (see [201, 126)  ) 

L   is the set of functions on tht Torus tn   A 
and   T assigns to a function Its values on a uniform 
grid of reshes 

in each coordinate. 

txamplej      (sc» (30)  ) 

The map   T   assigns to a function a finite subset 
of its non-interpolative spline coefficients. 

UampleJ)    ( see (311  ) 

The rap T assigns to a function coefficients of 
a least squarps or L' fit of the function to a flnltt 
linear combination of functions. 

In all nf these cases (1.8) and (1.9) are 
approximated for synthesis purposes by the vector 
matrix recursion relation 

Jn '   "("'Vl (3.1) 

9 

P (x.y) denotes the average of Pn over a ball of 

siiall radius centered at (x,y) 

where J  is the imaqe of either f (x) or P (x) 

under I  and • indicates that J  must be re- n n 

n\ 

S'filn^ 

normalized or transformed so that a canonical choice of 
pre-image ol    J  . which we denote by    1* J  , is a 
density,    'he relation (T.I) can be arrived at in the 

n v  n followinT way.    First, one notes that in the one-step 

JR-ly (i-M-l)e,n • Fl|T (J-N-l)e2
n      Predictor ^' ,nr "»**• 

rnt)(x)   I ,nf  5(/,y) D^y.ir,,) l»n(y) dy 

M   and   N    are integers 

i n, en     are eigenvalue and eigenvectors of   s
nin.;> 

where 

Mr-2 

%\n-l 

'n "n   IV •^-2'  ' i:n|n-2''nin-2 

E "nl'o •V2) 

md ■  superscnot denote averaging with respect to the 

"""> r v, (.r'-r'"'-«;-'""-';-''- i'l    j»l 

Eximple 3     L    is  the set of continuous probability 

densities on the Torus 

1 

and applying   T    .    to both sides,  it follows that 

•'no    Vil'n/ ^(«.y) Dn(y.*n) T*.n(y)ciy 

which is equivalent to (3.1). A problem which leaas :-. 
numerical instability is the following; suppose (T , 
and {T'l are chosen and the relation n 

Jn ■  *<") Jn-I (3.2) 

r - J 

N.    are integers, and    a"       ,     are Fourier coeffi- 
J V-'r 

dents of   Pn (see (271 ). 

txampla 4     (see (28) ) 
The trap   T   assigns to « function a finite subset. 

Its Interpolatlve spline under tension coefficients. 

Exarpje_j    (see [«91  ) 
The rap   T   assigns to a function a finite subset 

of Its coefficients In a Causs-Hermlte expansion. 

is iterated, the sequent-» Tn Jn does not always 
remain positive, even wh(>n J0 is a vector with 
F* ■)„   positive.    In (xar.ple 5, a convenient and 

effective modification of (3.2) to oreserve positivlty 
is redefining    Jn    as 

cl(i)    •   max (o,(K(n)Jn_1)(l)) 

In examples 1, 2 and 6,    T     can be chosen so that tht 

above negativity effect does not arise. 

For problems where the signal process is a 
degenerate random process (I.e., a random variable), 
the representation theorem gives an explicit expression 
for the conditional density and the prcblem of re- 
presenting the density is trivial--see [32) for results 
concerning this degenerate case. 

Thepoint mass representation. Examples 1 and 2, 
was the first one considered and. In fact, can be made 

»The choice depends on whether one wishes to synthesize the filter or one-stop predlctir. 

3 



quite accuracy by Increasing the number of grid points 
until the,signal estimates for a fixed sequence of 
cbVsrvdtlons agree to say four places by successive 
choices of finer subdivisions of the grid. The 
accuracy obtained by this method Is rot quite 
unexpected—see for pxampie the discussion on Page 4 of 
(J4J, where coincidence of form is compared with 
retric closeness. The drawback of t^e point mas*. 
rethod consists of the Urge computation time per 
estirate, and In fjct the other representation 
r^thods were rotivated by the desire to decrease this 
estirate time, while preserving a ()iv»n accuracy re- 
lative to a point nass accuracy benchmark. A some- 
whit different approach to the representation problem 
consist of determination of a perturbation series for 
Pp and Fn In (1.8) and (1.9) when Sn(y,x) depends 
on a parameter q; for example, suppose 

Sn(x.y) 

. (ill. 
2q 

c 'iq 

then Fn and Pn can be determined a» series in q, 
see (35) and (36) for complete details. This latter 
approach (s numerically investigated in 136). 

The representation problem is quite important in 
that the time between estimates can be improved by an 
order of magnitude through a careful choise of the 
representation. While clearly this problem of 
representation Is important and deserves careful study, 
it seems to be a second order effect relative to 
CO' nutation time of estimates, while the choice of 
synthesis device is first order.  In a later section 
we will discuss other synthesis devices which promise 
two or more orders of rrain'tude speed improvement over 
synthesis by third generation serial digital computers. 

4. A Typical Problem 

The problem of phase demodulation is a problem of 
low state dimension and has been extensively in- 
vestigated both from tne point of view of optimal snd 
suboptimal design--see (?iJ| for referenres to a 
universally used suboptimal design, the phase lock 
loop. For this problem the following model is 
appropriate: 

An»l "n* 
(4.1) 

♦ u. 

where Up Is a Gaussian white noise sequence of zero 
nean and variance .'.q. The initial condition on (4.1) 
is bivariate normal and independent of the plant noise 
un. The observation process is 

'n 

.2 

• cos x„ ♦ v„ n   n 

sin x ♦ v„ n   n 

(4.2) 

1 where v' are Independent Gaussian white noise 

sequences of zero mean and variance r/,".. and uncor- 
relatcd with xö , xj and un- The sampling rate A 
Is chosen as , 

on tlH basis of a linear analysis to assure good 
approximation of continuous data—see (21) and (26). 

If the sensor were llneir, the Wiener theory would 
show that the mean square error In estimating phase *'„ 
Is " 

H   • V2 q* r 

for continuous observations, which, of course. Is I 
lower bound on the rean square error of the phase 
demodulation problem. 

The cyclic loss function,  1/2(1 - cosfx^ - x*)) 
was considered originally In (4) and rediscovered In 
141), and still later in (41), all In the context of a 
less realistic phase demodulation problem where the 
phase is Rrownlan motion'   , Instead of the Integrated 
Brownian motion model  represented by (4.1).    This 
cyclic loss function is appropriate for problems where 
one Is Interested only in estimating relative phase. 
The cyclic estimate that   Xp    t which minimize» the 
cyclic loss, is the argument of 

-l.o 
_A 

(?-) 

2-    2-/A 

e" ./n(x,y)dx dy 

where 

ii:od 2 
n(x,y)    is the conditional distribution of   xn 

xn mod ?«//■,     given the observations.     In fact, 
by consideration of the estimation of relative phase, 
the relevant conditional distribution for filtering can 
be taken as the distribution on Torus, T    arising from 
f^ditional distribution of phase and phase rate, 
xn  • 'n    liven the observations,    /'„(x.y), where 

,(x.y) ■  I •'(« • ? v. y •) (4.3) 
M.J 

for    (».y) < T.    Extensive f'onte Carlo simulation of the 
cyclic nonlinear filter has s^nwn that the cyclic 
estimate achieves a 3-db error performance ir-provement 
over the phase lock Ioop--see (42).    The first results 
wero cntained for a sinqls    q    and a point rrass filter, 
see example 6 of Section 3, and for each value of   A, 
three hours of fi6no C.P.U. v^ere required.    Later, by 
using the Fourier representation of the density, the 
C.P.U.  time was cut by a factor of 10.    Finally, In 
(43) we demonstrated that rean square error for the 
optimal demodulator was independent of   q.    Details on 
the representation. Example 7, Section 3. can be found 
ll  |44). 

It is clear from this example that, while 
significant err-.r vii-iance reduction Is possible with 
a serial digUal cotrpu^er as a reelization device, the 
massive computational task associated with accurate 
synthesis ami Monte Carlo "-'or analysis  limit tne 
state dime'ision of the nonlinear filters one can 
effectively build and analyze. 

5•    !10IS.Infective Synthesis Devices 

It became clear very ea 
was effectively speed-liint 
(1.8). necessary to "updat 
density to obtain the a pos 
for the state A seconds 1 
data is rereived. From the 
clesr that Immense estimate 
can be obtained by using a 
the synthesis tool. An arj 
sa/ings  is given in (29). 

rly that serial  realization 
ed by the ronvolution task, 
" the a priori conditional 
tenori conditional density 
ater, when a new piece of 
Structure of (1.8), it Is 
computation time reduction 

t     'Hei digital computer as 
. of the possible 

When the phase Is Brownian motion, -«rror variance l-provement due to using the nonlinear filter Is only 
abo'it .7 db, and further, the absence of the necessity of phase rate tracking makes the problem of little 
practical interest, except perhaps for classroom discussion. 

4 



A feasib'lity study of tht synth@sls of opttm~l 
filters usin~ a hybrid system to achieve p~rallelts~ 
for · the convolution task is reported in [461. This 
s t udy used a serial nachin~ to simulate a contemporary 
h· tlrl d system with 1·lOBSSL as the sirnulcttion langu•ge. 
The results obtained in this f~asihllity s tudy 
indicated that a hybrid system w1s cJpable of 
ach ieving considerJble time saving, al beit with only 
t.~o place estimate accurJcy . In t he last year, a 
hybr id nonlinear filter was built at the Labatorlo 
d ' Au tomatico, University Polytecnico aarcelona, Spain, 
us ing an Electronic Associates EAI -680 hyhrld system 
with a floating point processor. This hybrid non
li near filter achieved the characteristics predicted 
in [~61, and the results are reported In [451. 

Another approach is usin9 a conte~orary 
parallel machine. say the llliac, as the synthesis 
tool; preliminary e\timdtes Indicate that thr!@-hour 
~onte Cdrlo runs on th@ CDC 6600 can be accomplished 
In three minut@S on the llTiac and, more importantly, 
nonlinear filters corres~ondlng to problems with four
s tate di~nsional signal orocess mode1s c4n be built 
a d Monte Carlo error analysis perfo~~d routinely. 
This i s an area of our current research interest. 

Finally, it is clear thdt special purpose serial 
machines fabricated on acoustic-optic or surface wave 
~rinciples In theory and for simple ~i gndls in 
prac tice can achieve t~mporal contolutions in 6600 
CJC le time about 200 nano~econds--see (47J . In (481, 
an ap~ro~ imate homomorphi sm between the Banach 
4 1 ebr~ R, of peri od ic functions of one variable and 
the Ba~ach Algebra Br of functions on the r-
d i~en~ ional torus. The multiplica tion in these 
a lgebras is the appropriate convoluti on. ~hen r • 2, 
then F ~nri G in B2 • we have 

¢(F•G) ,:. (F)" o(G ) (!J. l) 

,.;here ·~ is t he approprilte ring homomorphi sm. The 
- e1ning of (5. 1) i s thdt ( 1.8) can be computed by 
perfor~in~ a tempora l convolut ion of 

¢(S0 ) and :(Fnl 
for the phase demodulation problem ~nd tne temporal 
convoluti on can be done us inq surf~ce w~ves generated 
by ~ ( Fn ) on a piezo-electric crystal with photo
graphi : al1y deposi t ed ~e~a llic fin~ers correspondin~ 
to ){ Sn). This becomes mos t interesting when Sn is 
ircependent of n a'> i n the case of the phase 
delllodulation problem. S•Jch a device is r .rre.1tly in 
the planning stage and i s a joint resear~h pr~ject 
of the author ~nd Or. Eugene Dieu lesaint of ~ cole 
Su~e ri eu r de Chieme e t Physi•, Paris. 

6. Conclusions 

In this paper we have reviewed so~ of the first 
1 tt~mp t , to synthes ize the opti mal nonl inear fil te r. 
ir~ probl e~ itself, whil e extremely i ~por tant, in~uces 
soluti on methorl~ ,,,hich are P.xtremely ti :-te consuming 
b~ ca us e of what Bel lman has ap tly called the curse of 
d'~e sionality. The curr~nt technics , while prima t iv~. 
are . ~pli~able to a wide variety of prohiems, 
inc!•gli ng, for example, the solution of p<!ri!boli c 
partial different ial eQ~ations in core han one space 
di <ension and are of impor tance if only fo r thi J 
apo l ication. Thi5 survey wi 11 have served its 
purpo~e ff it succe~ds in interesting r~s earc~ 
worke rs In pursuin~ these problens fu .. ther and 
deve l oping new rethod~ of pr~cti cal synth~sis. 
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